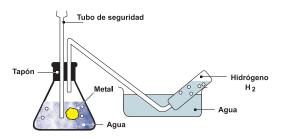


2

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA - (TIPO I)

- **1.** De acuerdo con la fórmula química del sulfato de aluminio $Al_2(SO_4)_3$, es válido afirmar que éste
- A. tiene dos moléculas de Al
- B. está compuesto por tres clases de moléculas
- C. tiene cuatro átomos de O
- D. está compuesto por tres clases de átomos

CONTESTE LAS PREGUNTAS 2 Y 3 DE ACUERDO CON LA SIGUIENTE ECUACIÓN


$$Zn + 2HCI \longrightarrow ZnCl_2 + H_2$$

Masa molar g/mol		
Zn HCI ZnCl ₂ H ₂	65 36 135 2	

- **2.** Es válido afirmar que la ecuación anterior, cumple con la ley de la conservación de la materia, porque
- el número de átomos de cada tipo en los productos es mayor que el número de átomos de cada tipo en los reactivos
- B. la masa de los productos es mayor que la masa de los reactivos
- el número de átomos de cada tipo en los reactivos es igual al número de átomos del mismo tipo en los productos
- D. el número de sustancias reaccionantes es igual al número de sustancias obtenidas
- **3.** De acuerdo con la ecuación anterior, es correcto afirmar que
- A. 2 moles de HCl producen 2 moles de ZnCl₂
 y 2 moles de H
- Imol de Zn produce 2 moles de ZnCl₂ y 1 mol de H
- C. 72 g de HCl producen 135 g de $\rm ZnCl_2$ y 1 mol de $\rm H_2$
- D. 135 g de ŹnCl₂ reaccionan con 1 molécula de H₂

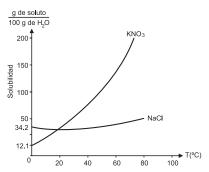
CONTESTE LAS PREGUNTAS 4 Y 5 DE ACUERDO CON LA SIGUIENTE INFORMACIÓN

Un método para obtener hidrógeno es la reacción de algunos metales con el agua. El sodio y el potasio, por ejemplo, desplazan al hidrógeno del agua formando hidróxidos (NaOH ó KOH). El siguiente esquema ilustra el proceso

4. De acuerdo con lo anterior, la ecuación química que mejor describe el proceso de obtención de hidrógeno es

A.
$$2H_2O + 2K \longrightarrow H_2 \uparrow$$

B.
$$H_2 \uparrow + 2KOH \longrightarrow 2H_2O + 2K$$


C.
$$2H_2O + 2Na \longrightarrow 2NaOH + H_2 \uparrow$$

D.
$$H_2O + Na \longrightarrow NaOH + H$$

- **5.** De acuerdo con la información anterior, el número de moles de potasio necesarias para producir ocho moles de hidrógeno es
- A. 1
- B. 2
- C. 8
- D. 16

3

6. En la gráfica se muestra la dependencia de la solubilidad de dos compuestos iónicos en agua, en función de la temperatura.

Se preparó una mezcla de sales, utilizando 90 g de $\rm KNO_3$ y 10 g de NaCl. Esta mezcla se disolvió en 100 g de $\rm H_2O$ y se calentó hasta 60°C, luego se dejó enfriar gradualmente hasta 0°C. Es probable que al final del proceso

- A. se obtenga un precipitado de NaCl y KNO₃
- B. se obtenga un precipitado de NaCl
- C. los componentes de la mezcla permanezcan disueltos
- D. se obtenga un precipitado de KNO,

CONTESTE LAS PREGUNTAS 7 Y 8 DE ACUERDO CON LA SIGUIENTE TABLA

La tabla presenta la electronegatividad de 4 elementos X, J, Y y L

Elemento	Х	J	Υ	L
Electronegatividad	4.0	1.5	0.9	1.6

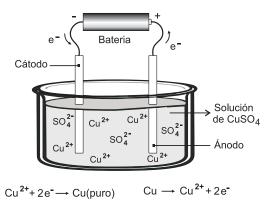
7. De acuerdo con la información de la tabla, es válido afirmar que el compuesto con mayor carácter iónico es

- A. LX
- B. JL C. YJ
- D. YX

8. De acuerdo con la información de la tabla, es válido afirmar que el compuesto de mayor carácter covalente es

- A. LY
- B. JL
- C. YX
- D. YJ

9


$$Fe^{0} + 2H^{+1}CI^{-1} \longrightarrow Fe^{+2}CI_{2}^{-1} + H_{2}^{0}$$

De acuerdo con la ecuación planteada si se cambia el hierro Fe por dos moles de sodio Naº probablemente se formará

- A. 2NaCl + H₂
- B. NaCl + H
- C. $2NaH + \mathring{Cl}_2$
- D. NaCl₂ + H₂

CONTESTE LAS PREGUNTAS 10 Y 11 DE ACUERDO CON LA SIGUIENTE INFORMACIÓN

La purificación de cobre generalmente se realiza por medio de electrólisis. La técnica consiste en sumergir en una solución de CuSO₄ una placa de cobre impuro, la cual actúa como ánodo y una placa de cobre puro que actúa como cátodo y luego conectarlas a una fuente de energía, para generar un flujo de electrones a través de la solución y las placas como se observa a continuación

- 10. El ión Cu2+ cuenta con
- A. 2 protones más que el átomo de cobre
- B. 2 protones menos que el átomo de cobre
- C. 2 electrones más que el átomo de cobre
- D. 2 electrones menos que el átomo de cobre

11. De acuerdo con la información, después de llevar a cabo la electrólisis, el cobre puro se encontrará adherido

A. al ánodo

B. al cátodo y al ánodo

C. al cátodo

D. a la superficie del recipiente

CONTESTE LAS PREGUNTAS 12 Y 13 DE ACUERDO CON LA SIGUIENTE TABLA

átomo o ión del elemento características	х	Υ	W
número de e-	11	6	8
número de p+	11	6	8
número de n	12	8	9
e- de valencia	1	4	6

12. De acuerdo con la tabla anterior, la estructura de Lewis que representa una molécula de YW₂ es

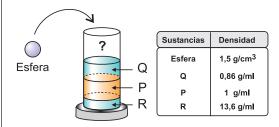
A. ***W*** *Y * **W***

B. ***W** * X X * W *

C. **W** XY • **W**

D. ***W*** *Y* *W

13. De acuerdo con la información de la tabla, es válido afirmar que los números de masa de X y Y son respectivamente


A. 13 y 12

B. 11 y 6

C. 22 y 12

D. 23 y 14

CONTESTE LAS PREGUNTAS 14 A 16 DE ACUERDO CON LA SIGUIENTE GRÁFICA

14. Al dejar caer la esfera en la probeta, lo más probable es que

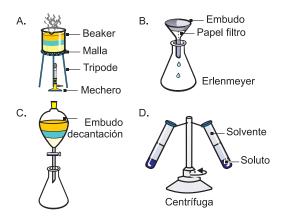
A. flote sobre la superficie de Q por ser esférica

B. quede en el fondo, por ser un sólido

C. flote sobre P por tener menos volumen

D. quede suspendida sobre R por su densidad

15. Si se pasa el contenido de la probeta a otra, es probable que


A. Q, P y R formen una solución

B. Q quede en el fondo, luego P y en la superficie R

C. P y Q se solubilicen y R quede en el fondo

D. P, Q y R permanezcan iguales

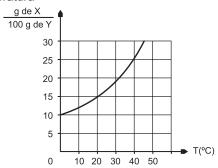
16. Para obtener por separado Q, P y R el montaje experimental más adecuado es

- **17.** A una mezcla de los líquidos X y W, inmiscibles entre si, se agrega una sal que es soluble en los 2 líquidos. Posteriormente se separa la mezcla por decantación en dos recipientes. El líquido X se evapora completamente quedando en el recipiente la sal como sólido. De acuerdo con esta información, si se evapora completamente la mezcla inicial (X, W y sal) es probable que
- A. quede una menor cantidad de sal en el recipiente
- B. quede en el recipiente el líquido W y la sal disuelta
- C. el recipiente quede vacío
- D. quede una mayor cantidad de sal en el recipiente
- **18.** Utilizando 1 mol de la sustancia J y agua, se prepara un litro de solución. Si a esta solución se le adicionan 200 ml de agua, es muy probable que
- permanezca constante la concentración molar de la solución
- B. se aumente la concentración molar de la solución
- C. se disminuya la fracción molar de J en la solución
- D. permanezca constante la fracción molar de J en la solución
- **19.** Se preparó medio litro de una solución patrón de HCl 1M; de esta solución, se extrajeron 50 ml y se llevaron a un balón aforado de 100 ml, luego se completó a volumen añadiendo agua. Teniendo en cuenta esta información, es válido afirmar que el valor de la concentración en la nueva solución será igual
- A. al doble de la concentración en la solución patrón
- B. a la cuarta parte de la concentración en la solución patrón
- C. a la mitad de la concentración en la solución patrón
- D. a la concentración en la solución patrón

CONTESTE LAS PREGUNTAS 20 Y 21 DE ACUERDO CON LA SIGUIENTE INFORMA-CIÓN

A cuatro vasos que contienen volúmenes diferentes de agua se agrega una cantidad distinta de soluto X de acuerdo con la siguiente tabla.

Vaso	Volumen de agua (ml)	Masa de X adicionada (g)	
1	20	5	
2	60	15	
3	80	20	
4	40	10	


En cada vaso se forman mezclas homogéneas

- **20.** De acuerdo con la situación anterior, es válido afirmar que la concentración es
- A. mayor en el vaso 3
- B. igual en los cuatro vasos
- C. menor en el vaso 1
- D. mayor en el vaso 2
- **21.** Si se evapora la mitad del solvente en cada uno de los vasos es muy probable que al final de la evaporación
- A. los cuatro vasos contengan igual masa de la sustancia X
- B. la concentración de las cuatro soluciones sea igual
- disminuya la concentración de la solución del vaso dos
- D. aumente la masa de la sustancia X en los cuatro vasos

6

CONTESTE LAS PREGUNTAS 22 A 24 DE ACUERDO CON LA SIGUIENTE INFORMACIÓN

La solubilidad indica la máxima cantidad de soluto que se disuelve en un solvente, a una temperatura dada. En la gráfica se ilustra la solubilidad del soluto X en el solvente Y en función de la temperatura

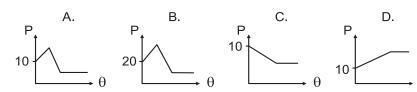
22. La solubilidad de X en Y a 20°C es

- A. 15 g de X en 100 g de Y
- B. 10 g de X en 100 g de Y
- C. 5 g de X en 100 g de Y
- D. 25 g de X en 100 g de Y

23. Es válido afirmar que al mezclar 15 g de X con 100 g de Y se forma una

- A. solución a 10°C
- B. mezcla heterogénea a 20°C
- C. solución a 40°C
- D. mezcla heterogénea a 30°C

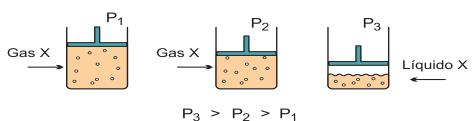
24. A 40°C una solución contiene una cantidad desconocida de X en 100 g de Y; se disminuye gradualmente la temperatura de la solución hasta 0°C, con lo cual se obtienen 10 g de precipitado, a partir de esto es válido afirmar que la solución contenía inicialmente


- A. 25 g de X
- B. 20 g de X
- C. 15 g de X
- D. 10 g de X

CONTESTE LAS PREGUNTAS 25 Y 26 DE ACUERDO CON LA SIGUIENTE INFORMACIÓN

Dos recipientes de igual capacidad contienen respectivamente oxígeno (Recipiente M) y nitrógeno (Recipiente N), y permanecen separados por una llave de paso como se indica en la figura

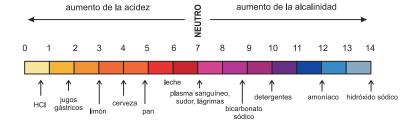
25. Si se abre completamente la llave, la gráfica que representa la variación de la presión (P) con el tiempo (θ) en el recipiente M, es


26. La fracción molar del oxígeno después de abrir la llave debe ser

fracción molar = moles de oxígeno moles de oxígeno + moles de nitrógeno

7

- A. menor que cero
- B. mayor que cero y menor que 1
- C. mayor que 2
- D. mayor que 1 y menor que 2


27. En el siguiente esquema se muestra un proceso de compresión en un cilindro que contiene el gas X

De acuerdo con la información anterior, si se disminuye la presión ejercida sobre el líquido X, es probable que éste se

- A. solidifique
- B. evapore
- C. sublime
- D. licúe

CONTESTE LAS PREGUNTAS 28 A 30 DE ACUERDO CON LA SIGUIENTE GRÁFICA

- **28.** De acuerdo con la gráfica, al adicionar bicarbonato sódico a la cerveza lo más probable es que
- A. disminuya la alcalinidad y el pH aumente
- B. aumenten la ácidez y el pH
- C. el pH aumente y disminuya la ácidez
- D. disminuyan la alcalinidad y el pH
- **29.** Para disminuir el pH de la leche, se debe adicionar
- A. bicarbonato de sodio
- B. plasma sanguíneo
- C. jugo de limón
- D. amoníaco

30. De la gráfica se puede concluir que

- A. las sustancias alcalinas tienen pH neutro
- B. los detergentes se pueden neutralizar con amoníaco
- C. el limón es más ácido que el HCI
- D. en general los alimentos tienen pH ácido

31. El pH de una solución acuosa disminuye al aumentar la concentración de iones hidronio. En la tabla se indican las concentraciones de iones hidronio en las soluciones M, N, O y P.

8

Es válido afirmar que el pH de la solución

- A. M es mayor que el de la solución O
- B. O es menor que el de la solución P
- C. N es mayor que el de la solución M
- D. P es menor que el de la solución N

Solución de ácido	Concentración de iones hidronio (M)
М	2 x 10 ⁻⁴
N	4 x 10 ⁻³
0	1 x 10 ⁻⁵
Р	3 x 10 ⁻²

32. La fórmula general de la serie de los alcanos es C_n + H_{2n+2} donde n es el número de átomos de carbono presentes en la molécula. Si una molécula tiene 12 átomos de hidrógeno, la fórmula molécular del alcano probablemente sería

- A. CH
- B. C₅H₄
- C. C₆H₁
- D. $C_{12}H_{12}$

33. 1 2 3

De las fórmulas químicas anteriores, las que representan hidrocarburos saturados son

- A. 1 y 3
- B. 2 y 4
- C. 3 y 4
- D. 1 y 2

CONTESTE LAS PREGUNTAS 34 Y 35 DE ACUERDO CON LA SIGUIENTE ECUACIÓN QUÍMICA

Compuesto P

34. Si el compuesto R es un compuesto saturado, es posible que su estructura se represente como

B.
$$CH_3 = CH_2$$
 D. $CH_3 - CH_2$ C = O H - C - OH OH

35. Si se reemplaza el compuesto P por un compuesto J para llevar a cabo la reacción con el hidrógeno, la fórmula molecular del nuevo compuesto R obtenido es C₅H₃O₂. De acuerdo con ésto, es válido afirmar que J tiene

- A. 4 átomos de carbono
- B. 6 átomos de hidrógeno
- C. 6 átomos de carbono
- D. 5 átomos de hidrógeno